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Non-contact

Spall Breach
W (kg-tnt) 1.2 W (kg-tnt) 1.2
W (Ib-tnt) 3.168 W (Ib-tnt) 3.168
R(m) 1.6 R(m) 1.6
R(ft) 5.248 R(ft) 5.248
Za(ft/lb”r1/3) | 3.57 | Za(ft/Ib~1/3) 3.57
f'c 30 f'c 30
f'c 4350 f'c 4350
a 0.02511 a 0.028205
b 0.01004 b 0.144308
C 0.13613 C 0.049265
W 25.27 Yy 25.27
35.13
m(ft) 0.16 m(ft) 0.15
h(m) 0.05 h(m) 0.05
76 mm bomb
L 0.2 L 0.2
L(ft) 7.87 L(ft) 7.87
D 0.076 D 0.076
D(ft) 2.99 D(ft) 2.99
Cr 0.46 Cr 0.46
B 1 B 1
Wadj 1.47157 Wadj 1.47157
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(Software & Tools) 999 MMN
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LS-DYNA (Ansys / LSTC) — n niin-Explicit ynxkna nnjp'vin.
Abaqus Explicit (Dassault Systémes).

OpenRadioss — ni'x7in'o7 nino T Explicit.
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